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TARGET 
VARIABLE

0 → NO 0 → NON USER 0 → > 50K

1 → YES 1 → USER 1 → ≤ 50K

LEVELS OF 
ETHNICITY 
ATTRIBUTE

ASIAN ASIAN BLACK AMERICAN-INDIAN/ESKIMO 

BLACK BLACK/ASIAN ASIAN-PAC-ISLANDER 

CAUCASIAN CAUCASIAN BLACK 

HISPANIC WHITE/ASIAN CAUCASIAN

NATIVE AMERICAN WHITE/BLACK OTHER

OTHER OTHER
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DATA: STUDENT PERFORMANCE DATASET

SCENARIO: HYPOTHETICAL SCENARIO OF A 
UNIVERSITY SELECTION PROCESS IN WHICH
THE DECISION-MAKER DETERMINES WHICH
STUDENTS ARE SUITABLE ON THE BASIS OF 
THEIR PERSONAL QUALIFICATIONS AND 
ACHIEVEMENTS, SO AS TO MAXIMIZE THE 
INSTITUTION UTILITY 

SYSTEM’S GOAL: 
Γ = ÇE`Ç@I(ZA@D@}, ZITE@YIBHH)
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UNFAIRNESS-UTILITY 
TRADE-OFF FOR RANKINGS 

UNDER FAIRNESS 
CONSTRAINTS

RED LINE: UNFAIRNESS 

BLUE LINE: UTILITY 

Y-AXIS: UTILITY AND INEQUALITY 
VALUES RANGING FROM 0 TO 1

X-AXIS: NUMEROSITY OF THE 
RANKINGS 
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LOW LEVELS OF INEQUALITY

LOW GENERAL UTILITY IN THE FIRST TOP-N-RANKING
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UNIFORM LEVELES OF INEQUALITY AND UTILITY

OVERALL WORST PERFORMANCES
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EQUITY AND UTILITY RESULTS ARE POLICY DEPENDENT

EQUITY POLICY: BEST CHOICE FOR NUMEROUS RANKING

EQUALITY POLICY: BEST CHOICE FOR LESS DENSE RANKING

THE MORAL GROUND IS CONTEXT DEPENDENT
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• DECISION THEORY
• LONG-TERM FAIRNESS FOR CLASSIFICATION 

SYSTEMS

A DECISION SUPPORT SYSTEM TO 
ENSURE LONG-TERM FAIRNESS IN 
MACHINE LEARNING SYSTEMS
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A DECISION SUPPORT SYSTEM TO ENSURE LONG-TERM FAIRNESS
1. DECISION THEORY APPLIED TO ALGORTHMIC DECISION-MAKING
2. INDIVIDUAL DYNAMICS INTEGRATED IN THE MODEL
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OUR SYSTEM IS EFFICIENT IN ANALYZING THE LONG-TERM EFFECTS OF POLICIES 

POLICIES HAVE DIFFERENT INFLUENCES ON GROUPS IN A NON-ONE-STEP MODEL 

FAIRNESS IS NOT CONSISTENT OVER TIME 

FAIRNESS CONSTRAINTS DO NOT NECESSARILY KEEP THEIR VALIDITY FOR AS LONG AS THEY ACT 

INDIVIDUAL DYNAMICS AFFECT SYSTEM OUTCOMES 
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DATA ANNOTATION 
SYSTEM

PREDICTING FUTURE 
DISCRIMINATORY RISK 

BASED ON BIASED 
DATA

RANKING SYSTEM

PROPOSING A FAIR-
DISTRIBUTIVE 

RANKING SYSTEM

DECISION SUPPORT 
SYSTEM

MODELING INDIVIDUAL 
DYNAMICS FOR 

LONG-TERM FAIRNESS
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CROSS-DISCIPLINARY 
VALIDATION 

MULTI-HIGH-INTERPRETABILITY 

SYSTEMATIC GROUND 
ENCODING 
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ESTIMATING INCLUSIVENESS 

ESTIMATING TRAINING LIKELIHOOD 

DATA BIAS AWARENESS
DATA BIAS AND CONDITIONAL PROBABILITIES
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GROUP A

GROUP B

CASE 1
THE ACTUAL PROPERTIES DIFFER 
ACROSS GROUPS

CASE 2
THE ACTUAL PROPERTIES ARE 
DIFFERENT FROM THOS OBSERVED

OBSERVED SPACE = CONSTRUCT SPACE

DECISION SPACE → CORRECT MAPPING

POPULATION CASES SPACES

STUDENTS UNDER 20

STUDENTS OVER 20

OBSERVED SPACE ≠ CONSTRUCT SPACE

DECISION SPACE → ERRONEOUS MAPPING
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INDIVIDUAL DYNAMICS

`å: APPLYING WITH QUALIFICATION

`ô: APPLYING WITHOUT 
QUALIFICATION

`´: NOT APPLYING

`å: Q such that X = [Q, NQ, Q]
`ô: NQ
`´: N

ALTERNATIVES SCENARIOS PREFERENCESIMPACTS AND
UTILITY FUNCTION



INDIVIDUAL DYNAMICS

π(ω|x)	 Q NQ N

OPTIMISTIC 0.75 | 0.86 0.75 | 0.76 0.75 | 0.76 

PESSIMISTIC 0.85 | 0.86 0.85 | 0.76 0.85 | 0.76 

AGNOSTIC 0.8 | 0.86 0.8 | 0.76 0.8 | 0.76 

ALTERNATIVES SCENARIOS PREFERENCESIMPACTS AND
UTILITY FUNCTION



INDIVIDUAL DYNAMICS
ALTERNATIVES SCENARIOS PREFERENCESIMPACTS AND

UTILITY FUNCTION

f(ω|x)	 Q NQ N

OPTIMISTIC 0.9 1 -1

PESSIMISTIC 0.9 0 0

AGNOSTIC 0.9 0 0



INDIVIDUAL DYNAMICS
ALTERNATIVES SCENARIOS PREFERENCESIMPACTS AND

UTILITY FUNCTION

f(ω|x)	 Q NQ N

OPTIMISTIC 0.9 1 -1

PESSIMISTIC 0.9 0 0

AGNOSTIC 0.9 0 0

ÇE`ù∈S¨E\DEFB ` =

ÇE`ù∈S
∑≠∈Æ T(`, Ø)

|Ω|



INDIVIDUAL DYNAMICS
ALTERNATIVES SCENARIOS PREFERENCESIMPACTS AND

UTILITY FUNCTION

f(ω|x)	 Q NQ N

OPTIMISTIC 0.9 1 -1

PESSIMISTIC 0.9 0 0

AGNOSTIC 0.9 0 0

ÇE`ù∈S¨E\DEFB ` =

ÇE`ù∈S
∑≠∈Æ T(`, Ø)

|Ω|

Laplace(x) 0.9 0.33 - 0.33


